Name \qquad Hour \qquad
The test: on Wed 10/28

1. At what point of its flight is a projectile shot at an angle at its maximum height? \qquad
2. Is Δy the same as Viy? \qquad
3. Show what happens to the $V x$ and $V y$ during the flight of an angled projectile.

H or A? 4. Tiger Woods is on the $16^{\text {th }}$ hole at Pebble Beach Golf Course and hits a golf ball with a velocity of $40 \mathrm{~m} / \mathrm{s}$ at an angle of $41^{\circ} \mathrm{N}$ of E .
a) How far will the golf ball travel horizontally? (161 m)

$$
\Delta x=
$$

\qquad
b) Calculate the maximum height of the golf ball during his shot. (35 m)

$$
\Delta \mathrm{y}=
$$

\qquad
5. You are part of the Amazing Race and are attempting to land a projectile from a hot air balloon onto a bullseye. If you are in the hot air balloon 25 m above the bullseye and the balloon is traveling horizontally at $2.78 \mathrm{~m} / \mathrm{sec}$, how far (Δx) before the bullseye should you release the projectile? (6.3 m)

$$
\Delta \mathrm{x}=
$$

\qquad
6. A baseball player hits a ball at an unknown angle N of E. If it is in the air for 6 sec total and travels 25 m horizontally, calculate the velocity in miles per hour and the angle it was hit at. $(66.5 \mathrm{mph}$, H or A? $81.9^{\circ} \mathrm{N}$ of E)

$$
\begin{aligned}
& \mathrm{Vx}=\square \\
& \mathrm{Viy}=\square \quad \mathrm{Z} \\
& \mathrm{~V}=\ldots \quad \mathrm{mph} \\
& \theta=
\end{aligned}
$$

\qquad Hour \qquad
7. A daredevil is shot out of a cannon at $40^{\circ} \mathrm{N}$ of E with a speed of $20 \mathrm{~m} / \mathrm{s}$. A net is placed at a horizontal distance of 35 meters. At what height above the cannon should the net be placed in order to catch the daredevil? $(3.85 \mathrm{~m})$
8. A cannon is fired horizontally with $a V_{\mathrm{x}}=115 \mathrm{~m} / \mathrm{s}$ from the top of a cliff at a height of 201 meters. How far from the base of the cliff will the ball land? (737 m)
H or A?
9. You shoot a potato gun at $30 \mathrm{~m} / \mathrm{s}$ at $42^{\circ} \mathrm{N}$ of E off the edge of a cliff that is 31 meters high. With what speed will it hit the ground in mph? This is TRICKY! You will need to use projectile equations to H or A ? find $\Delta \mathrm{y}$ at the top and then a $1-\mathrm{D}$ equation to find the V_{f} at the bottom. (71.1 mph) (***|f you want to try another problem like this...change the angle to 62 N of E and resolve it. The answer should be 81 mph)

$\mathrm{V}=\ldots$
$\mathrm{V}=\ldots$
m / s
mph

